



A Vertical Approach to ZEV Freight Transport

• TransPower solutions:

Container Shuttling

About TransPower

- Poway-based, privately-held Transportation and Energy Company founded in 2010
- Battery-electric and hybrid heavy-duty vehicles
- Stationary Battery Energy Storage Systems
- Related technologies and sub-systems
- Combined relevant experience on the BOD: 75yrs
- Primary work through public-private partnerships

Process and Product Innovation at TransPower

- Systems Engineering Approaches
- Modular Battery Packaging/Management
- Onboard Inverter/Charge Unit(s)
- All-Electric Accessory Solutions
- Automated Manual Transmission
- Platform Commonality/Extensibility

Reach Stacker Prototype Estimated Specifications

Features

•Zero Emissions at Point of Use •Lower Lifecycle Cost than a Diesel Vehicle if use hours are high •Includes Two High-performance induction Motors •Includes PbA battery technology •Includes Off-board Level-II type charger

Vehicle Curb Weight:	17,500 lbs
Motor Combined Power Rating:	150 kW
Energy Stored (Usable):	100 kWh
Recharge Time Using Off-board Charger:	15 Hours
Loaded Range (Hours):	6+ Hours

Class-8 Yard Truck Estimated Specifications

Features

•Zero Emissions at Point of Use
•Lower Lifecycle Cost than a Diesel Vehicle
•Includes High-performance IPM Motor
•Includes Prismatic LiFEPO4 cell technology
•Includes Proprietary Automated Manual Transmission
•Includes High Power Onboard Charger

Vehicle Curb Weight Rev. 2:	21,500 lbs
Towing Capacity:	58,500 lbs
Motor Power Rating:	150 kW
Energy Stored (Usable):	172 kWh
Recharge Time Using Onboard Charger:	2.5 Hours
Energy Consumption Towing 22,000 lbs:	1.69 kWh/Mile*
Loaded Range (Miles):	100+ miles
Loaded Range (Hours):	12+ Hours

* Energy consumption data is from dynamometer testing conducted at UC Riverside using industry standard drive cycle. An Electric Yard Tractor is pictured above on the dyno.

Class-8 Drayage Truck Estimated Specifications

Features

•Zero Emissions at Point of Use •Lower Lifecycle Cost than a Diesel Vehicle •Includes Two High-performance IPM Motors •Includes Prismatic LiFEPO4 cell technology •Includes Proprietary Automated Manual 10-speed Transmission •Includes High Power Onboard Charger

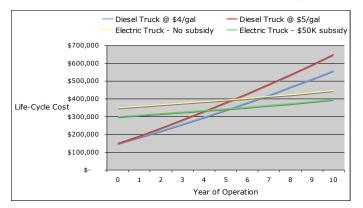
Vehicle Curb Weight:	22,500 lbs
Towing Capacity:	57,500 lbs
Motor Power Rating:	300 kW
Energy Stored (Usable):	215 kWh
Recharge Time Using Two Onboard Chargers:	1.75 Hours
Energy Consumption Towing 58,000 lbs:	2.75 kWh/Mile*
Loaded Range (Miles):	100+ miles

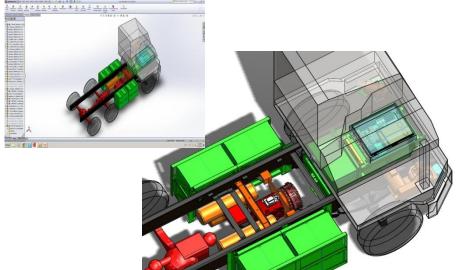
* Energy consumption data estimated.

eHighway Project

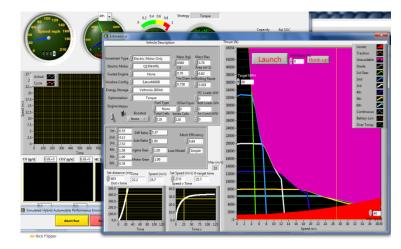
Features

•Zero Emissions in the catenary corridor •Two Class-8 vehicles: one a BEV and one a CNG hybrid •650VDC catenary for transit and charging phases •Includes LiFePO4 and/or Lithium Polymer battery technology •Includes on-board charging as appropriate





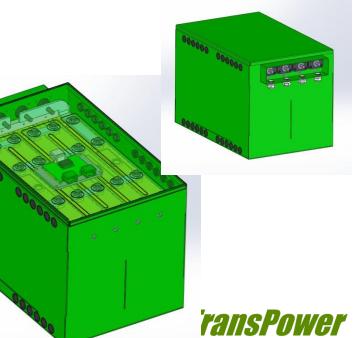
Systems Approach to ZEV


– Economic Analysis

- Simulation to Verification Product Development

			Zsepps×
2 0 0.2 0.4 0.6 0.8 Time offset: 20.006			
	3 4 5 0 02 04 06		2
	<mark>™ rontest2 *</mark> Ele <u>E</u> dt <u>V</u> ew <u>S</u> imulation Format Tor D C# II (M) ½ (B) (R) ≦ 		e Control Panel
Tirne offset 20.008	Sine Ware		Start real-time code
	Sine Wart - Scope1	восрей	Hammenhead LED Configuration
	Initializing	100% T=0.00	FixedStepDiscrete // bwclg.exe

- Rapid Prototyping Methodologies


Inverter/Charger and Modular ESS

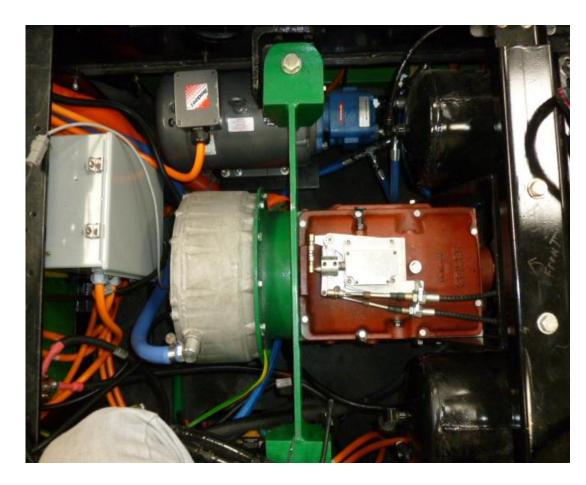
70kW 208V conductive charging on-board

10

 MileMax LiFEPO4 Modules

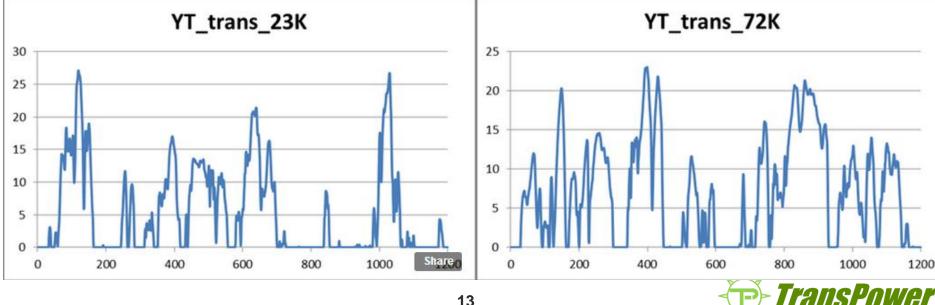
No-idle taken to the extreme

- No Belts, No PTO, No Radiator!
 I'm kidding on the radiator, but it's tiny
- Efficient Electrical Accessories
 - Demand-driven software control
 - 208V, 3-phase from ESS voltage
- Automated Manual Transmission
 - 4 forward speeds, electric reverse
 - No torque converter
 - Motor-synchronized shifting
 - No Transmission Cooler or pump



Automated Manual Transmission

- No clutch
- Motor-matched shifting
- Efficient RPMs
- Cooler running
- 50:1 final drive in low gear



Yard Truck Testing

- UC Riverside Dyno
- 1.69, 2.55kWh/mile
- WV port cycles
- Triple replicates
- Thorough DAQ

Points to Remember

- TransPower's vertical approach to ZEV freight transport provides opportunities for market innovation and scale economies
- Extreme idle-load reduction leads to high system efficiency and long run times
- On-board, high-rate charging supports early adoption, high utilization
- TransPower's systems-based approach and rapid controls prototyping provides flexibility and agility in early-adopter markets

www.transpowerusa.com

