Cajon Valley Union School District Electric School Bus Report

Tysen Brodwolf, Director of Transportation CVUSD

January 9, 2025

Agenda

Intro
CVUSD Transportation Logistics and Student Busing
CVUSD's Clean Energy Portfolio
Why Electric School Buses
Why Electric School Buses
Considerations, Route and Range Planning
Revenue Streams
Pilot Introduction
Cost Breakdown at a Glance
Why should CVUSD Expand Vehicle Electrification
Ouestions

Vehicle and Transportation Logistics

135 Total District Vehicles

42 Total School Buses

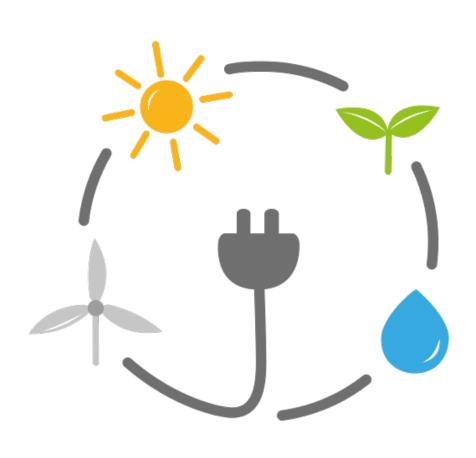
8 E Buses (three additional on Order)

5 Passenger Vans (two additional on order) for Student Transportation

10 Total Warehouse Delivery Trucks

5 E Trucks

Miscellaneous Passenger E Vehicles


Student Transportation

Home to School Transportation to 10 District School Sites

Special Needs Transportation to 26 School Sites

Special Needs Transportation to 11 Non-Public Schools

Average about 1,200 Field Trips annually

CVUSD Clean Energy Portfolio

- Solar at all 26 School Sites
 - Electric School Buses on the Road Since 2019
 - Five Temporary Chargers 2019-Present
 - 14 Vehicle to Grid Charging Stations Online
 - Infrastructure for 15 Additional Charging Stations
 - SDG&E V2G Pilot Project Participation
 - Passenger Vehicle Charging Stations Online in 2022

Why Electric School Buses:

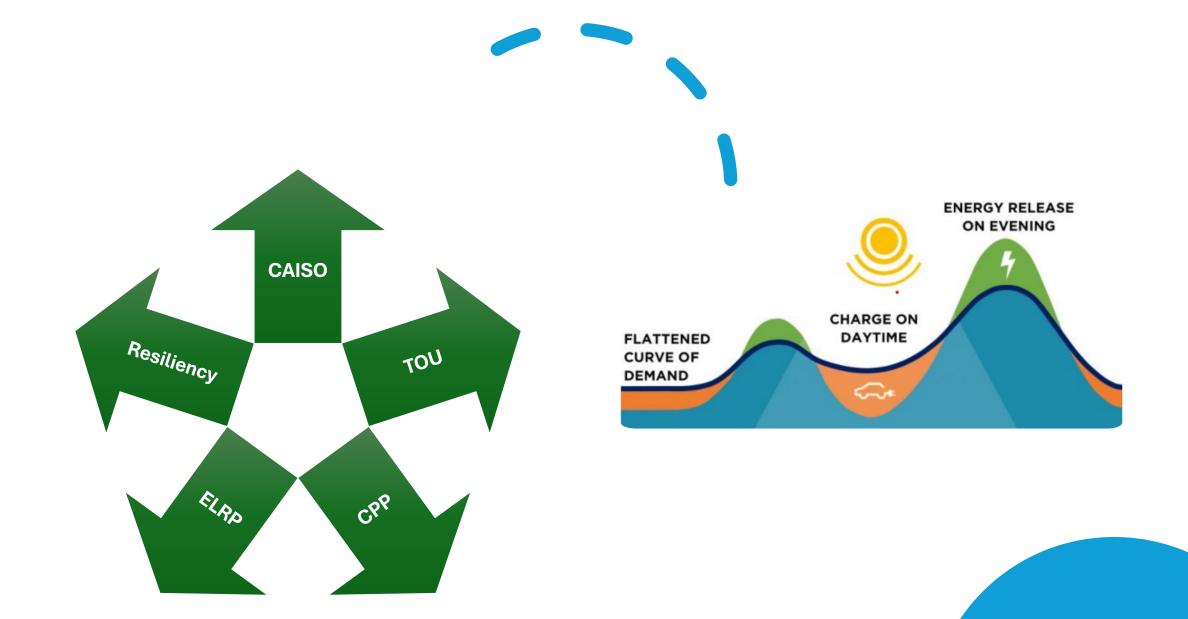
- Funding
- Reduce Emissions
- Lower Long Term Operational Costs?
- Improve Community Health and Air Quality
- Reduce Noise Pollution
- Predictable Usage Patterns
- Charge During Off Peak Hours
- Large Fleets
- Not in Use During Peak Demand

Considerations

Upfront costs vs. total cost of ownership (TCO)

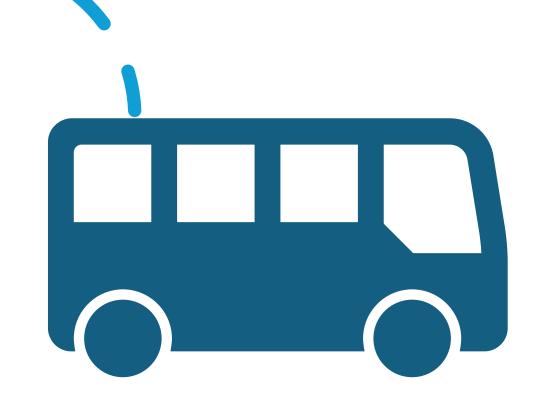
Federal, state, and local funding opportunities

How many chargers are needed?


What type of chargers (Level 2 or DC fast)

Is the local grid capacity sufficient

Locations for chargers


Exploring renewable energy options

Energy cost management (e.g., time-of-use rates)

Route and Range Planning

- Driver Training and Buy In
- Daily route distances and bus range
- Factors affecting range: terrain, climate, auxiliary power needs
- Scheduling charging times
- Overnight vs. mid-route charging
- Assessing Feasibility
- Fleet Management Integration
- Warranty, Repairs & Maintenance
- Back Up Plan

CVUSD V2G PILOT PROJECT

Pilot Project Features

- Vehicle to Grid Technology
- Six 60 kW DCFC V2G Charging Stations
- Retrofit 6 Electric School Buses with Unidirectional L2 Charging Capabilities and Upgrade to Enable DCFC V2G

- Five Year Vehicle-to-Grid (V2G)
 Pilot
- One Year V2G study
- Third party data evaluation and published report

Vehicle Cost Breakdown

Cajon Valley \$75,000

HVIP (Hybrid and Zero Emission Truck and Bus Voucher)
\$175,000

EPA/ DERA (Diesel Emissions Reductions Act) \$175,00

Charging Infrastructure Breakdown

Cajon Valley

\$0

Nuvve

< \$445,000

SDG&E

1.1Million

Final Discussion

Thank you for your time today