San Diego Regional Clean Cities

School Bus Electrification - Lunch & Learn 1/9/25

Energetics, CLEAResult Energy Sustainability Consulting

Jason Greenblatt & Kevin Wood

Evaluation Year 3 (2023)

Fleet, Public& Workplace Charging Investments

	Program	Budget (\$Millions)
Liberty	EV Bus Infrastructure Program	\$0.2
	Schools Pilot	\$3.9
	Parks Pilot	\$0.8
Pacific Gas & Electric (PG&E)	EV Fleet (Fleet) Program	\$236.3
	EV Fast Charge Program	\$22.4
	Schools Pilot	\$5.8
	Parks Pilot	\$5.5
Southern California Edison (SCE)	Charge Ready Transport (CRT) Program	\$342.6
	Schools Pilot	\$9.9
	Parks Pilot	\$9.9
San Diego Gas & Electric (SDG&E)	Power Your Drive for Fleets (PYDFF) Program	\$107.4
	Vehicle-to-Grid (V2G) Pilot	\$1.7
	Schools Pilot	\$9.9
	Parks Pilot	\$8.8
	\$765	

Lead Authors Cadmus Group Energetics Incorporated

Contributing Authors ZMassociates Environmental Corporation National Renewable Energy Laboratory DAV Energy Solutions Inc Marshall Miller

Pritchard Hierarchy of Electric Vehicle Charging

EV hierarchy of needs, each user, manufacturer, supplier, etc. must be able to master the technology below a level before a new level can be mastered, thus the greatest impediment to smart charging is mastery of connected charging.

School bus (and other markets) Charging Operations AMI (utility meter data)

- Typical morning peak at 10AM
 - <5 hours of dwell time
- Typical evening charging
 - >12 hours of dwell time
 - Two evening peaks
 - split by use of load management

Figure 21. Daily Average Load Curve for Four Market Sectors across Utility MDHD Programs in Q4 2023

Network Service Provider (Charging Session) Data

2,500

4,000 1,500 1,000 500

500 0

0 - 2

- Useful to characterize "charging flexibility"
- Time stamps
 - Session start (plug in/out)
 - Power draw (start/end)
- Consumption and demand
- EVSE/port

No 4pm-9pm Impact

20+

5 - 20

2 - 5

Connection Hours Beyond Charge

Figure 22. Charging Flexibility of Four Market Sectors Across Utility MDHD Programs in 2023

Plentiful Opportunity to Save \$\$\$ on Monthly Utility Bills

- Cost and GHG analysis based on Charg Flexibility & hardware
- Other utilities have aligned Super Off Pe (lowest cost times) with least emissions times
 - SDG&E is in process with CPUC
- Optimization prioritized Cost savings
 - Following Year 4 (2024) analysis to dig into emissions optimization

Figure 23. 2023 Cost and GHG Reduction Potential if Each Site Used Load Management

General Reporting Awareness

- Costs by Site, installed kW, Vehicle
 - See also HD, MD, Transit Bus

Figure 15. School Bus Costs (n=51 sites)

Figure 17. Average Installed Charging Capacity per Site by Market Sector, All Utilities

Cajon Valley EV and V2G Pilot

Unique option to jointly bill Building & EV Charging Several years of operations

Early generation technology (buses and chargers) Discharging under SDG&E's ELRP in '22&'23 (as reported)

6 Borg Warner – Rhombus DC chargers

Mix of bus generations

45-60kw charging

25-45 kw discharge

120-210 kWh

One data logger swapped mid project to another bus

Significant mix of DC & Level 2 Charging L2 an indicator of DC issues results in limiting V2G

Table 161. V2G Pilot Bus Average State of Charge at Start of Charging

Bus Number*	Average Start Charge State	Maximum Charge Added (kWh)
521	58%	128
524	57%	130
525	56%	138 riving shift
526	67%*	ry after eacherman
520	an Sining in batte	136
522	energy rem 58%	156
523 Significant	58%	151
Average	58%	145

* Bus 526 has a larger battery than the rest of the fleet.

Figure 256. Lion Beat Telematics V2G Pilot Electric School Bus Charging Session Input Power Source

Bus and Building Experience and Modeling

Figure 257. V2G Pilot Building and Bus Charging Load Curves

Table 162. V2G Financial Modeling Scenario Assumptions and Results

Scenario / Parameter			Unit
Average Remaining Bus Battery Capacity After Daily Driving Complete (per bus)			%
Average Remaining Bus Battery Capacity After Daily Driving Complete (per bus)			kWh
ELRP			
Annual ELRP Events		10	Events
ELRP Compensation per Kilowatt-hour			\$/kWh
Value per Bus Annually (Based on Average Remaining Bus Battery Capacity)			\$/bus/year
Net Metering			
Annual Peak Weekdays		260	Days/year
Net Metering Compensation per Kilowatt-hour		\$0.15	\$/kWh
Annual Compensation per Bus for Daily Net Metering (Based on Average Remaining Bus Battery Capacity)		\$2,890	\$/bus/year
Peak Shaving	(small for 6-chargers & buses)	365 - Daily	
Peak Shaving Demand, kW		20	kW
Monthly Peak Shaving Value per Kilowatt-hour			\$/kWh
Annual Peak Shaving Value		\$7,200	\$/year

- Limited (~50) hours of annual ELRP availability
- Increase usable hours throughout year with Net Metering (>500%) and Peak Shaving (>900%)
- Some opportunity to charge before On Peak
 - Prepare for energy-price arbitrage from Net Metering discharge
- Future V2G oriented rates on horizon

Considerations

- Funding options towards projects
 - Rule 45, SB350, HVIP, etc.
 - Easements, ownerships/site control, etc.
- Power capacity and access
- How can different electricity consumption needs work together?
- Options re: billing tariffs, programs
 - New VGI oriented tariffs from each IOU
 - Continued demonstration projects (PG&E V2X and SCE Rialto USD, Large Oakland Unified Zum V2G)